Structure Reports

Online
ISSN 1600-5368

A two-dimensional organic-inorganic hybrid compound, poly[(ethylenedi-amine)tri- μ-oxido-oxidocopper(II)molybdenum(VI)]

Ozgul Gun, ${ }^{\text {a }}$ Don VanDerveer ${ }^{\text {b }}$ and Mehtap Emirdag-Eanes ${ }^{\text {a }}$ *
${ }^{\text {a }}$ Izmir Institute of Technology, Department of Chemistry, Izmir 35430, Turkey, and ${ }^{\mathbf{b}}$ Department of Chemistry, Clemson University, Hunter Research Laboratory, Clemson, SC 29634-0973, USA
Correspondence e-mail: mehtapemirdag@iyte.edu.tr

Received 20 August 2008; accepted 1 September 2008
Key indicators: single-crystal X-ray study; $T=303 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.015 \AA$; R factor $=0.063 ; w R$ factor $=0.111$; data-to-parameter ratio $=13.3$.

A new organic-inorganic two-dimensional hybrid compound, $\left[\mathrm{CuMoO} 44_{2}\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]$, has been hydrothermally synthesized at 443 K . The unit cell contains layers composed of $\mathrm{CuN}_{2} \mathrm{O}_{4}$ octahedra and MoO_{4} tetrahedra. Corner-sharing MoO_{4} and $\mathrm{CuN}_{2} \mathrm{O}_{4}$ polyhedra form CuMoO_{4} bimetallic sites that are joined together through O atoms, forming an edge-sharing $\mathrm{Cu}_{2} \mathrm{Mo}_{2} \mathrm{O}_{4}$ chain along the c axis. The one-dimensional chains are further linked through bridging O atoms that join the Cu and Mo atoms into respective chains along the b axis, thus establishing layers in the $b c$ plane. The ethylenediamine ligand is coordinated to the Cu atom through its two N atoms and is oriented perpendicularly to the two-dimensional $-\mathrm{Cu}-\mathrm{O}-$ Mo- layers. The average distance between adjacent layers, as calculated by consideration of the closest and furthest distances between two layers, is $8.7 \AA$. The oxidation states of the Mo and Cu atoms of VI and II, respectively, were confirmed by bond-valence sum calculations.

Related literature

For related literature on inorganic-organic hybrid materials, see: Gopalakrishnan (1995); Katsoulis (1998); Kresge et al. (1992). For related structures containing molybdate(VI) units, see: Cui et al. (2005); Niven et al. (1991). For the thermal behaviour of a related ethylenediamine-containing compound, see: Han et al. (2005). For general background, see: Brown \& Altermatt (1985).

Experimental

Crystal data

$\left[\mathrm{CuMoO}_{4}\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]$
$M_{r}=283.58$
Monoclinic, $P 2_{1} / c$
$a=9.954$ (4) \AA
$b=9.436$ (4) \AA
$c=7.674$ (3) \AA
$\beta=107.734(18)^{\circ}$

$$
\begin{aligned}
& V=686.6(5) \AA^{3} \\
& Z=4 \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=4.88 \mathrm{~mm}^{-1} \\
& T=303(2) \mathrm{K} \\
& 0.41 \times 0.06 \times 0.02 \mathrm{~mm}
\end{aligned}
$$

Data collection

Rigaku Mercury CCD
diffractometer
Absorption correction: multi-scan (REQAB; Jacobson, 1998)
$T_{\text {min }}=0.678, T_{\text {max }}=1.000$
(expected range $=0.615-0.907)$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.063 \quad 91$ parameters
$w R\left(F^{2}\right)=0.111$
H-atom parameters constrained
$S=1.10$
1209 reflections

5616 measured reflections 1209 independent reflections 1098 reflections with $I>2 \sigma(I)$ $R_{\mathrm{int}}=0.089$
$\Delta \rho_{\text {max }}=0.79 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.92 \mathrm{e}^{-3}$

Table 1
Selected bond lengths (\AA).

Mo1-O2	$1.739(7)$	$\mathrm{Cu} 2-\mathrm{O} 4^{\mathrm{i}}$	$1.951(7)$
$\mathrm{Mo} 1-\mathrm{O} 3$	$1.740(7)$	$\mathrm{Cu} 2-\mathrm{O}_{1} \mathrm{~A}^{\mathrm{ii}}$	$2.574(7)$
$\mathrm{Mo} 1-\mathrm{O} 4$	$1.789(7)$	$\mathrm{Cu} 2-\mathrm{O} 3 \mathrm{~A}^{\mathrm{iii}}$	$2.460(7)$
$\mathrm{Mo} 1-\mathrm{O} 1$	$1.803(6)$	$\mathrm{Cu} 2-\mathrm{N} 2$	$2.014(8)$
$\mathrm{Cu} 2-\mathrm{O} 1$	$1.947(7)$	$\mathrm{Cu} 2-\mathrm{N} 1$	$2.020(9)$
Symmetry codes: $(\mathrm{i})-x, y+\frac{1}{2},-z+\frac{1}{2} ;($ (ii)		$-x,-y+2,-z+1 ;$ (iii) $-x,-y+2,-z$.	

Data collection: CrystalClear (Rigaku/MSC, 2001); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL software used to prepare material for publication: SHELXTL.

We are indebted to TÜBITAK (TBAG-2160) and L'Oreal Türkiye for support of this work.

[^0]
metal-organic compounds

References

Brown, I. D. \& Altermatt, D. (1985). Acta Cryst. B41, 244-247.
Cui, X.-B., Lü, K., Fan, Y., Xu, J.-Q., Ye, L., Sun, Y.-H., Li, Y., Yu, H.-H. \& Yi, Z.-H. (2005). J. Mol. Struct. 743, 151-155.

Gopalakrishnan, J. (1995). Chem. Mater. 7, 1265-1275.
Han, G.-H., Lin, B.-Z., Li, Z., Sun, D.-Y. \& Liu, P.-D. (2005). J. Mol. Struct. 741, 31-35.
Jacobson, R. A. (1998). REQAB. MSC, The Woodlands, Texas, USA.

Katsoulis, D. E. (1998). Chem. Rev. 98, 359-387.
Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C. \& Beck, J. S. (1992). Nature (London), 359, 710-712.
Niven, M. L., Cruywagen, J. J. \& Heyns, J. B. B. (1991). J. Chem. Soc. Dalton Trans. pp. 2007-2011.
Rigaku/MSC (2001). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

A two-dimensional organic-inorganic hybrid compound, poly[(ethylenediamine)tri- $\mu_{\text {-oxido- }}$ oxidocopper(II)molybdenum(VI)]

O. Gun, D. VanDerveer and M. Emirdag-Eanes

Comment

The synthesis and characterization of organic inorganic solid state hybrid materials has attracted great attention due to their structural diversity (Kresge et al., 1992) and widely promising potential applications in chemistry, biology and material science (Katsoulis, 1998). Recent studies have shown that hydrothermal synthesis at low temperature and pressure provides a powerful tool for the synthesis of organic inorganic hybrid materials (Gopalakrishnan, 1995).

The unit cell of the title compound, (I), $\left[\mathrm{Cu}(\mathrm{en}) \mathrm{MoO}_{4}\right]$ (en = ethylenediamine), contains layers composed of distorted $\mathrm{CuN}_{2} \mathrm{O}_{4}$ octahedra and MoO_{4} tetrahedra. The coordination environment of the Cu atom comprises two nitrogen atoms (N1 and N 2) from the ethylenediamine ligand with $\mathrm{Cu}-\mathrm{N}$ distances of 2.020 (9) and 2.014 (8) \AA, and four bridging oxygen atoms from four adjacent MoO_{4} tetrahedra with $\mathrm{Cu}-\mathrm{O}$ distances in the range 1.947 (7) to 2.574 (7) \AA (Fig. 1), representing the usual Jahn-Teller distorted coordination.

The Mo atom is coordinated by one terminal oxygen atom (O2) with a distance of 1.739 (7) \AA that is indicative of a double bond (Cui et al., 2005) and comparable to other molybdate complexes (Niven et al., 1991). The Mo centre also has two μ_{2} bridging O atoms (O 1 and O 4), as well as a μ_{3} bridging O atom (O 1) with Mo- O bond lengths between 1.739 (7) and 1.803 (6) Å. Corner-sharing MoO_{4} and $\mathrm{CuN}_{2} \mathrm{O}_{4}$ polyhedra form CuMoO_{4} bimetallic sites, and the CuMoO_{4} groups are joined together through the O 1 atoms forming an edge-sharing $\mathrm{Cu}_{2} \mathrm{Mo}_{2} \mathrm{O}_{4}$ chain along the c axis (Fig. 2). The one-dimensional chains are linked through bridging O 4 atoms, that bind the Cu and Mo atoms in the respective chains along the b axis, to establish layers in the $b c$-plane. The en ligand is coordinated to the copper atom through its two nitrogen atoms and is oriented perpendicularly to the two-dimensional $-\mathrm{Cu}-\mathrm{O}-\mathrm{Mo}$ - layers (Fig. 3). The average distance between two layers, as calculated under consideration of the closest and furthest distances between two adjacent layers, is $8.7 \AA$.

The +VI oxidation state of the Mo atoms and the + II oxidation state of the Cu atoms were confirmed by bond valence sum calculations (Brown \& Altermatt, 1985). The calculated bond valence values for the Mo and Cu atoms are 5.86 and $1.94 \AA$, respectively.

The thermal behaviour of the title compound was studied in the range 298-923 K under nitrogen atmosphere, demonstrating that the compound is stable up to 468 K . The TG curve exhibits two steps of weight loss. While the first weight loss is 14.61% in the temperature range 468 to 513 K , the second is 6.78% between 513 to 723 K . The total weight loss from 468 to 723 K thus becomes 21.39%, corresponding to the removal of an ethylenediamine group in agreement with the calculated value of 21.15%. These results are comparable to the thermal behaviour of the related compound $\left[\mathrm{Cd}(\mathrm{en})_{3}\right] \mathrm{MoO}_{4}$ (Han et al., 2005).

Experimental

Compound (I) was synthesized via a hydrothermal reaction procedure. The following reagents were used as obtained; $\mathrm{Na}_{2} \mathrm{MoO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Carlo Erba, 99.5%), $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Sigma, 99.6%), NaCl (Merck, $>99 \%$), and en (Merck, $>99 \%$). A mixture of $\mathrm{Na}_{2} \mathrm{MoO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.2420 \mathrm{~g}, 1 \mathrm{mmol}), \mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.3410 \mathrm{~g}, 2 \mathrm{mmol}), \mathrm{NaCl}(0.0585 \mathrm{~g}, 1 \mathrm{mmol})$, en ($0.2 \mathrm{ml}, 3$ mmol) and water ($9 \mathrm{ml}, 500 \mathrm{mmol}$) in a molar ratio of 1:2:1:3:500, was loaded into a 23 ml Teflon-lined stainless steel autoclave and heated at 443 K for 72 h . After slow cooling to room temperature, blue crystals with columnar habit of the title compound were recovered in a 90% yield by suction filtration and washed with water and acetone.

Refinement

H atoms were placed in idealised positions and refined in the riding model approximation with a C-H distance of $0.96 \AA$ and $U_{\text {iso }}(H)=1.2 \times \mathrm{U}_{\text {eq }}(\mathrm{C})$, and with a $\mathrm{N}-\mathrm{H}$ distance of $0.90 \AA$ and $\mathrm{U}_{\text {iso }}(\mathrm{H})=1.2 \times \mathrm{U}_{\mathrm{eq}}(\mathrm{N})$, respectively.

Figures

Fig. 1. The coordination spheres around Cu and Mo atoms, drawn with displacement ellipsoids at the 50% probability level. H atoms of the en ligand are omitted for clarity. [Symmetry operators to generate equivalent atoms: $\mathrm{O} 1 \mathrm{~A}=-x, 2-y, 1-z ; \mathrm{O} 3 \mathrm{~A}=-x, 2-y,-z \mathrm{O} 4 \mathrm{~A}=-x, 1 / 2+y$, 1/2-z.]

Fig. 2. Polyhedra projection of the 1-D chain. $\mathrm{CuN}_{2} \mathrm{O}_{4}$ are shown as lined polyhedra, and MoO_{4} tetrahedra are hatched polyhedra.

Fig. 3. The two-dimensional $-\mathrm{Cu}-\mathrm{O}-\mathrm{Mo}$ - layers. Mo atoms are hatched circles, Cu atoms are lined circles, O atoms are open circles, C atoms are dotted circles and N atoms are shaded circles.

poly[(ethylenediamine)tri- μ-oxido-oxidocopper(II)molybdenum(VI)]

Crystal data

$\left[\mathrm{CuMoO}_{4}\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]$
$M_{r}=283.58$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=9.954$ (4) \AA
$b=9.436$ (4) \AA
$c=7.674(3) \AA$
$\beta=107.734(18)^{\circ}$
$V=686.6(5) \AA^{3}$
$Z=4$
$F_{000}=548$
$D_{\mathrm{x}}=2.743 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
$\lambda=0.71073 \AA$
Cell parameters from 4208 reflections
$\theta=2.2-26.0^{\circ}$
$\mu=4.88 \mathrm{~mm}^{-1}$
$T=303$ (2) K
Column, blue
$0.41 \times 0.06 \times 0.02 \mathrm{~mm}$

Data collection

Rigaku Mercury CCD diffractometer
Radiation source: Sealed Tube
Monochromator: Graphite Monochromator
Detector resolution: 14.6199 pixels mm^{-1}
$T=303(2) \mathrm{K}$
ω-scans
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
$T_{\text {min }}=0.678, T_{\text {max }}=1.000$
5616 measured reflections

1209 independent reflections
1098 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.089$
$\theta_{\text {max }}=25.0^{\circ}$
$\theta_{\min }=3.1^{\circ}$
$h=-11 \rightarrow 11$
$k=-11 \rightarrow 11$
$l=-8 \rightarrow 9$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.063$
$w R\left(F^{2}\right)=0.111$
$S=1.10$
1209 reflections
91 parameters
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0154 P)^{2}+14.9224 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.79 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.92$ e \AA^{-3}
Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} / U_{\text {eq }}$
Mo1	$0.16945(9)$	$0.89946(9)$	$0.21937(11)$	$0.0186(3)$
Cu2	$-0.12230(13)$	$1.03150(13)$	$0.30706(17)$	$0.0205(4)$
N1	$-0.1618(9)$	$0.8217(9)$	$0.3090(11)$	$0.0226(19)$
H1A	-0.1479	0.7798	0.2106	0.027^{*}
H1B	-0.1035	0.7815	0.4103	0.027^{*}
O1	$0.0784(7)$	$1.0015(7)$	$0.3471(9)$	$0.0212(15)$
N2	$-0.3317(9)$	$1.0540(10)$	$0.2586(11)$	$0.025(2)$
H2A	-0.3505	1.0774	0.3625	0.030^{*}
H2B	-0.3651	1.1230	0.1758	0.030^{*}
O2	$0.3401(7)$	$0.8692(8)$	$0.3611(10)$	$0.0299(18)$
O3	$0.1771(9)$	$0.9921(8)$	$0.0266(10)$	$0.036(2)$
O4	$0.0827(7)$	$0.7333(7)$	$0.1511(10)$	$0.0258(16)$
C2	$-0.3985(10)$	$0.9178(11)$	$0.1886(14)$	$0.024(2)$
H2C	-0.4021	0.9054	0.0630	0.029^{*}
H2D	-0.4930	0.9145	0.1962	0.029^{*}
C1	$-0.3096(11)$	$0.8039(12)$	$0.3058(16)$	$0.031(3)$
H1C	-0.3159	0.8100	0.4279	0.038^{*}
H1D	-0.3433	0.7123	0.2573	0.0387^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
$\mathrm{Mo1}$	$0.0228(5)$	$0.0186(4)$	$0.0169(4)$	$-0.0027(4)$	$0.0104(3)$	$-0.0023(4)$
Cu 2	$0.0204(7)$	$0.0178(6)$	$0.0233(7)$	$0.0005(5)$	$0.0074(5)$	$0.0011(5)$
N 1	$0.022(5)$	$0.027(5)$	$0.019(4)$	$-0.001(4)$	$0.007(4)$	$0.003(4)$
O 1	$0.025(4)$	$0.022(4)$	$0.018(4)$	$0.003(3)$	$0.009(3)$	$-0.004(3)$
N 2	$0.025(5)$	$0.036(5)$	$0.015(4)$	$-0.003(4)$	$0.008(4)$	$-0.004(4)$
O 2	$0.018(4)$	$0.037(5)$	$0.033(4)$	$-0.001(3)$	$0.006(3)$	$-0.011(4)$
O 3	$0.055(5)$	$0.035(5)$	$0.023(4)$	$-0.012(4)$	$0.022(4)$	$-0.003(4)$
O 4	$0.026(4)$	$0.022(4)$	$0.026(4)$	$-0.006(3)$	$0.005(3)$	$-0.003(3)$
C 2	$0.012(5)$	$0.033(6)$	$0.030(6)$	$-0.005(4)$	$0.008(4)$	$0.000(5)$
C 1	$0.026(6)$	$0.036(7)$	$0.034(6)$	$0.001(5)$	$0.014(5)$	$0.013(5)$

sup-4

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Mo} 1-\mathrm{O} 2$	1.739 (7)	N1-H1A	0.9000
Mo1-O3	1.740 (7)	N1-H1B	0.9000
$\mathrm{Mol-O} 4$	1.789 (7)	N2-C2	1.471 (13)
Mo1-O1	1.803 (6)	N2-H2A	0.9000
Cu2-O1	1.947 (7)	$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$	0.9000
$\mathrm{Cu} 2-\mathrm{O} 4^{\text {i }}$	1.951 (7)	$\mathrm{O} 4-\mathrm{Cu} 2^{\mathrm{iv}}$	1.951 (7)
$\mathrm{Cu} 2-\mathrm{O} 1 \mathrm{~A}^{\text {ii }}$	2.574 (7)	$\mathrm{C} 2-\mathrm{C} 1$	1.505 (15)
$\mathrm{Cu} 2-\mathrm{O} 3 \mathrm{~A}^{\text {iii }}$	2.460 (7)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	0.9600
$\mathrm{Cu} 2-\mathrm{N} 2$	2.014 (8)	C2-H2D	0.9600
$\mathrm{Cu} 2-\mathrm{N} 1$	2.020 (9)	$\mathrm{C} 1-\mathrm{H1C}$	0.9600
N1-C1	1.473 (13)	C1-H1D	0.9600
$\mathrm{O} 2-\mathrm{Mo} 1-\mathrm{O} 3$	109.1 (4)	$\mathrm{C} 2-\mathrm{N} 2-\mathrm{Cu} 2$	107.6 (6)
$\mathrm{O} 2-\mathrm{Mo1-O} 4$	109.4 (3)	$\mathrm{C} 2-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	110.2
$\mathrm{O} 3-\mathrm{Mo1-O} 4$	109.5 (3)	$\mathrm{Cu} 2-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	110.2
$\mathrm{O} 2-\mathrm{Mo} 1-\mathrm{O} 1$	107.8 (3)	$\mathrm{C} 2-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$	110.2
$\mathrm{O} 3-\mathrm{Mo1-O1}$	110.7 (3)	$\mathrm{Cu} 2-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$	110.2
$\mathrm{O} 4-\mathrm{Mo1-O1}$	110.4 (3)	$\mathrm{H} 2 \mathrm{~A}-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$	108.5
$\mathrm{O} 1-\mathrm{Cu} 2-\mathrm{O} 4{ }^{\text {i }}$	88.3 (3)	$\mathrm{Mo} 1-\mathrm{O} 4-\mathrm{Cu} 2^{\text {iv }}$	138.7 (4)
$\mathrm{O} 1-\mathrm{Cu} 2-\mathrm{N} 2$	177.3 (3)	N2-C2-C1	106.7 (9)
$\mathrm{O} 4{ }^{\mathrm{i}}-\mathrm{Cu} 2-\mathrm{N} 2$	94.2 (3)	N2-C2-H2C	110.4
$\mathrm{O} 1-\mathrm{Cu} 2-\mathrm{N} 1$	92.8 (3)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	110.4
$\mathrm{O} 4{ }^{\mathrm{i}}-\mathrm{Cu} 2-\mathrm{N} 1$	170.2 (3)	N2-C2-H2D	110.4
$\mathrm{N} 2-\mathrm{Cu} 2-\mathrm{N} 1$	84.9 (3)	C1-C2-H2D	110.4
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Cu} 2$	107.9 (6)	H2C-C2-H2D	108.6
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	110.1	N1-C1-C2	109.3 (8)
$\mathrm{Cu} 2-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	110.1	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.8
C1-N1-H1B	110.1	C2-C1-H1C	109.8
$\mathrm{Cu} 2-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	110.1	N1-C1-H1D	109.8
H1A-N1-H1B	108.4	C2-C1-H1D	109.8
$\mathrm{Mo} 1-\mathrm{O} 1-\mathrm{Cu} 2$	130.8 (4)	H1C-C1-H1D	108.3
$\mathrm{O} 1-\mathrm{Cu} 2-\mathrm{N} 1-\mathrm{C} 1$	172.4 (6)	$\mathrm{O} 4{ }^{\mathrm{i}}-\mathrm{Cu} 2-\mathrm{N} 2-\mathrm{C} 2$	170.1 (6)
$\mathrm{O} 4{ }^{\mathrm{i}}-\mathrm{Cu} 2-\mathrm{N} 1-\mathrm{C} 1$	76 (2)	$\mathrm{N} 1-\mathrm{Cu} 2-\mathrm{N} 2-\mathrm{C} 2$	-19.7 (6)
$\mathrm{N} 2-\mathrm{Cu} 2-\mathrm{N} 1-\mathrm{C} 1$	-9.1 (7)	$\mathrm{O} 2-\mathrm{Mo} 1-\mathrm{O} 4-\mathrm{Cu} 2^{\text {iv }}$	1.6 (7)
$\mathrm{O} 2-\mathrm{Mo} 1-\mathrm{O} 1-\mathrm{Cu} 2$	-161.3 (5)	$\mathrm{O} 3-\mathrm{Mo} 1-\mathrm{O} 4-\mathrm{Cu} 2^{\text {iv }}$	121.0 (6)
$\mathrm{O} 3-\mathrm{Mo} 1-\mathrm{O} 1-\mathrm{Cu} 2$	79.4 (5)	$\mathrm{O} 1-\mathrm{Mo} 1-\mathrm{O} 4-\mathrm{Cu}^{\text {iv }}$	-116.8 (6)
$\mathrm{O} 4-\mathrm{Mo} 1-\mathrm{O} 1-\mathrm{Cu} 2$	-42.0 (6)	$\mathrm{Cu} 2-\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 1$	43.7 (9)
$\mathrm{O} 4{ }^{\mathrm{i}}-\mathrm{Cu} 2-\mathrm{O} 1-\mathrm{Mol}$	-133.4 (5)	$\mathrm{Cu} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	36.0 (10)
$\mathrm{N} 1-\mathrm{Cu} 2-\mathrm{O} 1-\mathrm{Mo} 1$	56.3 (5)	$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	-53.4 (11)
$\mathrm{O} 1-\mathrm{Cu} 2-\mathrm{N} 2-\mathrm{C} 2$	14 (7)		

Symmetry codes: (i) $-x, y+1 / 2,-z+1 / 2$; (ii) $-x,-y+2,-z+1$; (iii) $-x,-y+2,-z$; (iv) $-x, y-1 / 2,-z+1 / 2$.

supplementary materials

Fig. 1

Fig. 2

supplementary materials

Fig. 3

[^0]: Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2192).

